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Abstract
Vibrational dynamics of the MnO lattice has been studied using density functional theory
combined with the direct method. Considerations have been limited to the harmonic
approximation. Ab initio calculated Hellmann–Feynman forces were used to obtain density of
states and the dispersion relations of phonons in the MnO crystal. Corrections for the local
Coulomb interactions were applied. The Hubbard energies were varied from 1 to 7.9 eV.
Increased Hubbard terms give a significant increase in the on-site force constants of cations,
while the force constants on anions are affected indirectly. The density of phonon states and the
dispersion curves are shifted to higher frequencies with the increasing Hubbard energies. The
on-site Coulomb interactions influence mainly the optical phonon vibrations. The higher
Hubbard terms lower the mean-squared vibrations of both cations and anions. The lattice
contribution to the heat capacity experiences small changes upon variation of Coulomb
repulsion. Results of the calculations are compared to the existing experimental data.

1. Introduction

The simple 3d transition-metal oxides (MnO, FeO, CoO, NiO)
form an important class of materials due to their several
electrical and magnetic properties of practical utility. They
are also important from a theoretical point of view since
they serve as benchmark materials for the study of correlated
electron systems [1, 2]. These oxides still challenge the
theory of strongly correlated electron systems since they
reveal difficulties in finding suitable models to explain their
properties [3]. The highly correlated nature of electron
interactions govern both the electronic structure and the lattice
dynamics of 3d transition-metal oxides [4–6]. Therefore,
the study of the vibrational dynamics of these oxides has
become a subject of experimental [8–13] and theoretical
investigations [4–7, 14–18].

Manganese oxide, MnO, is an example of an antiferro-
magnetic system with a type-II ordering (AFII). In the AFII
ordering the magnetic moments of transition-metal cations are
parallel within the (111) planes and they are antiparallel be-
tween the adjacent (111) planes. Hence, the spin-up and spin-
down cations form two ferromagnetic sublattices and the AFII
supercell is twice as large as the crystallographic unit cell. In
the paramagnetic phase, MnO has a rocksalt structure (space
group Fm3̄m) with a lattice constant of 4.445 Å [19]. Be-
low the Néel temperature of 118 K [20, 21], a small rhom-

bohedral distortion along the 〈111〉 direction accompanies the
transition to the AFII state. The distorted structure has a
space group R3̄m. The magnetic cell parameter equals 8.873–
8.863 Å, while a deviation from cubic symmetry amounts to
0.3◦–0.6◦ [22, 23]. Due to such small distortion the dynamic
properties of the MnO lattice are frequently investigated under
the assumption of perfect cubic symmetry [5].

Nowadays, computational methods based on density
functional theory (DFT) employ the corrections for strong
on-site Coulomb interactions between 3d electrons [1–3].
Interactions between correlated states are usually described by
the Hubbard potential U and the local exchange interactions
are taken into account via the term J [24, 25]. This allows
for MnO to open the so-called optical bandgap (lowest direct
dipole-allowed transition energy) of about 2 eV [26]. The
fundamental bandgap and the spin magnetic moment are equal
to 3.9 eV [27] and 4.58–4.79 μB [23, 28], respectively. The
DFT + U approach indicates that the MnO system is a charge
transfer/Mott–Hubbard insulator [3, 6].

This paper is aimed at a study of the vibrational properties
of the MnO lattice. Analysis is limited to the harmonic
approximation. An influence of the Hubbard potential on
lattice dynamics and the phonon-dependent thermodynamical
functions is discussed. Results of the calculations are
compared to the available experimental data.
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2. Methodology

Calculations were performed using the plane-wave basis VASP
code [29, 30] which implements the spin-polarized DFT and a
projector augmented wave (PAW) technique [31]. The valence
electrons of Mn and O were described by the pseudopotential
configurations (3d64s1) and (2s22p4), respectively. Exchange
and correlations were treated within the generalized gradient
approximation (GGA). A plane-wave expansion up to 520 eV
was used. Effects of electron correlation beyond GGA were
taken into account within the framework of GGA + U and the
simplified (rotationally invariant) approach of Dudarev et al
[25]. For Mn 3d electrons the Coulomb repulsion U was varied
from 1 to 7.9 eV, while J = 1 eV was kept constant. It should
be noted that U = 6.9 eV and J = 0.86 eV were obtained
from constrained DFT calculations by Anisimov et al [1].

The Brillouin zone was sampled using the 2 × 2 × 2 k-
point mesh generated by the Monkhorst–Pack scheme. A
combination of conjugate gradient energy minimization and
a quasi-Newton force minimization was used to optimize a
geometry and the atomic positions of the 64-atom supercell.
The atomic positions were relaxed until the forces were smaller
than 10−5 eV Å

−1
. The total energy was converged down to

10−7 eV.
The phonon dispersion relations and the vibrational

density of states (DOS) have been calculated within
the harmonic approximation and by using the direct
method [32, 33] based on the forces calculated via Hellmann–
Feynman theorem. The non-vanishing Hellmann–Feynman
(HF) forces, Fi (n, μ), acting on the atoms (n, μ) in the
supercell, are generated when a single atom (m, ν) is displaced
from its equilibrium position. The following relation between
the displacements u j(m, ν) and the forces Fi (n, μ) applies:

Fi (n, μ) = −
∑

j

�i j(n, μ, m, ν) u j (m, ν), (1)

where �i j(n, μ, m, ν) are the force constants. Taking into
account the crystal symmetry, �i j(n, μ, m, ν) are fitted to the
HF forces by a singular value decomposition algorithm. Those
force constants are used to construct the dynamical matrix
of the system, D(k), which depends on the wavevector k.
Diagonalization of D(k):

ω2(k, j) e(k, j) = D(k) e(k, j), (2)

leads to the eigenvalues ω(k, j) and the eigenvectors e(k, j),
which represent the frequencies and polarization vectors of
phonons, respectively. Here, the mode index j distinguishes
between the phonon branches at the given wavevector k.

For ionic and covalent crystals, the splitting between
transverse optic (TO) and longitudinal optic (LO) modes due to
the coupling between atomic displacements and a long-range
macroscopic electric field is calculated via the non-analytical
term added to the dynamical matrix [34]. The non-analytical
contributions takes on the following form [32, 35, 36]:

4πe2

V ε∞
√

Mμ Mν

× [k · Z∗(μ)]α[k · Z∗(ν)]β
|k|2

× exp{−2π ig · [r(μ) − r(ν)]}1 + cos(π |k|/|kBZ |)
2

, (3)

where k is the wavevector within a Brillouin zone with a
center at the reciprocal lattice vector g and kBZ stays for the
wavevector parallel to k having the length from the Brillouin
zone center to the Brillouin zone surface. Symbols V , Mμ

and rμ denote the volume of the primitive unit cell, atomic
masses and positions, respectively. The Born effective charge
tensors and the high-frequency dielectric constant are denoted
by Z∗(μ) and ε∞, respectively.

The partial phonon density of states describes the
contribution to the density of states for the selected atom μ

vibrating along a selected Cartesian coordinate i . It is defined
as [32]

gi,μ(ω) = 1

nd	ω

∑

k, j

|ei (k, j ; μ)|2δ	ω(ω − ω(k, j)), (4)

where ei (k, j ; μ) is the i th Cartesian component of the
eigenvector of the mode (k, j) for the atom μ, 	ω denotes the
frequency interval, n is the number of sampling wavevector
points, d stands for the dimension of D(k), while δ	ω(x)

equals 1 if |x | � 	/2, otherwise it is equal to zero. The total
vibrational density of states can be obtained from the following
relation:

g(ω) =
∑

i,μ

gi,μ(ω). (5)

In the harmonic approximation g(ω) is used to evaluate the
lattice contribution to the heat capacity which is expressed as
follows:

C = NrkB

∫ ∞

0
dω g(ω)

(
h̄ω

kBT

) exp( h̄ω
kB T )

[exp( h̄ω
kB T ) − 1]2

, (6)

where N is the number of primitive unit cells, r stands for
the number of degrees of freedom in the unit cell, T is the
temperature, and kB and h̄ denote the Boltzmann and Planck
constants, respectively.

The phonon density of states enables us to calculate a
thermal motion of atoms which enter the form factor describing
an intensity of the radiation scattered by the crystal. Such
a form factor contains the Debye–Waller factor defined as
exp{−Wμ(k)}, where

Wμ(k) = 1
2 (2πk · B(μ) · (2πk)). (7)

The B(μ) represents the static correlation function of the μ

th atom displacements, U(μ), from its equilibrium position
and it is a second-rank symmetric tensor having the following
components:

Bi j(μ) = 〈Ui (μ)U j (μ)〉. (8)

The tensor B(μ) represents the mean-squared displacement
of the atom μ and it is expressed by the diagonal and off-
diagonal partial phonon density of states gil,μ(ω) taking on the
following form [32]:

Bil(μ) = h̄r

2Mμ

∫ ∞

0
dω gil,μ(ω) ω−1 coth

(
h̄ω

2kBT

)
, (9)

where the symbol Mμ denotes the mass of the atom μ.
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Figure 1. Variation of lattice constant (a), magnetic moment (M)
and energy gap (Eg) with U for MnO. The exchange parameter J is
kept constant at 1 eV. Experimental values of a, M and Eg are taken
from [19], [23, 28], and [27], respectively.

In the present calculations, a small trigonal distortion from
the rocksalt structure is neglected and therefore one considers
only two crystallographically non-equivalent atoms, i.e. Mn
and O. The HF forces are generated by displacing Mn and O
atoms from their equilibrium position by 0.03 Å. Both positive
and negative displacements are applied to minimize the
systematic errors. Hence, four displacements are calculated.

For a nearly cubic symmetry of MnO, the tensors of Born
effective charges reduce to a diagonal tensor with a single
element Z∗

Mn = −Z∗
O = |Z∗|. The Born effective charges,

|Z∗| = 2.2, for Mn and O have been estimated using the
q → 0 limit technique and the Lyddane–Sachs–Teller relation
(ω2

LO − ω2
TO ∼ |Z∗|2/ε∞). The transverse optic frequency

ωTO = 7.86 THz and longitudinal optic frequency ωLO =
14.51 THz have been taken from experiments performed by
Haywood et al [10], while ε∞ = 4.95 has been adopted
from [37, 38]. It should be mentioned that a similar value
of |Z∗| has been used in other theoretical studies of lattice
dynamics of MnO [5, 6].

3. Results and discussion

The influence of U on the structural, magnetic and electronic
properties of MnO is shown in figure 1. The lattice constant
increases by about 2% with increasing U , while the magnetic
moment changes by 9%. The best agreement between the
experimental and calculated lattice constants is found for the
lowest values of U . The experimental magnetic moment is
reached for U > 5 eV. Of course, the most sensitive to the
choice of U is the energy gap. The calculated bandgap of
2.0 eV is encountered for U > 6 eV and it stays in agreement
with the calculated optical bandgap, the latter obtained for U =
6.9 eV by the full-potential linearized augmented plane-wave
method [3]. For U > 6 eV we approach the experimental value
of the optical bandgap (2.0 eV [26]), while the experimental
value of 3.9 eV determined by van Elp et al [27] is unlikely to
be obtained even for very high U . This apparent disagreement
has been discussed by Tran et al [3].

Figure 2. Variation of the on-site force constant on Mn (�ii ) upon
the applied U .

Calculations of the lattice vibrations have been performed
for U ranging from 1 to 7.9 eV. Therefore, one could obtain a
variation of the force constants upon the applied U as shown
in figure 2. The on-site force constant on Mn increases from
5.32 to 8.08 eV Å

−2
while increasing U from 1 to 7.9 eV. Such

a pronounced increase in the force constants (50%) cannot be
assigned to a modification of the crystal geometry since we
observe only a small increase in Mn–O distances. When U
changes from 1 to 7.9 eV, the bond length changes from 2.22 to
2.25 Å. Therefore, an enhancement in the force constants can
be assigned to the charge redistribution due to the increased
Coulomb repulsion on Mn. The higher U localizes more
strongly the 3d electrons of Mn and prevents the charge flow.
The force constants on oxygen are not so strongly affected by
U . The Hubbard U approaching 7.9 eV increases the force
constant at the oxygen site by about 29% as compared to the
force constant calculated with U = 1 eV. Hence, the oxygen
force constants experience the changes indirectly.

The force constants modified by the term U affect those
crystal properties which are phonon-dependent. One can
expect to obtain a quite significant change in the calculated
phonon dispersion relations and in the phonon density of states
(DOS). The calculated phonon dispersion curves with U = 1
and 7.9 eV are shown in figures 3 and 4, respectively. They
are compared to the inelastic neutron scattering data measured
at room temperature by Haywood et al [9, 10]. Calculations
are also compared to the recent inelastic neutron scattering
data obtained at low temperature (4.3 K) by Chung et al
[13]. It should be noted that in the latter experiment only the
transverse optical phonon modes have been measured. When
U = 1 eV is applied, the calculated phonon branches remain
significantly underestimated as compared to the experimental
data. Frequencies of both transverse and longitudinal modes
belonging to either acoustic or optical phonons are too small.
Only the longitudinal acoustic modes (LA) along the [ξξξ ]
direction seem to be better predicted. One has to note that this
branch also reproduces the experimental data with a reasonable
accuracy at U = 7.9 eV.

In the whole Brillouin zone of MnO, the transverse optical
(TO) and longitudinal optical (LO) phonons move upward with
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Figure 3. (a) Phonon dispersion relations of MnO calculated with
U = 1 eV (solid line). Inelastic neutron scattering data measured at
room temperature [9, 10] are shown by solid and open circles. Solid
triangles denote inelastic neutron scattering data obtained at
4.3 K [13]. Transverse and longitudinal modes are indicated by solid
and open symbols, respectively. (b) Partial phonon densities of states
of Mn (solid line) and O (dashed line) calculated according to
equation (4).

Figure 4. (a) Phonon dispersion relations of MnO calculated with
U = 7.9 eV. Experimental data from inelastic neutron
scattering [9, 10, 13] are shown for comparison. (b) Partial phonon
densities of states for Mn and O. The same notation as in figure 3
applies.

the increasing U . The evolution of TO and LO frequencies at
the �-point is shown versus U in figure 5. The increase of
the zone center TO and LO frequencies amounts to 34% and
6%, respectively. One has to note that the TO frequency is
directly calculated from the Hellmann–Feynman forces, while
the LO frequency results from the non-analytical term being
dependent upon the Born effective charges, the electronic part
of the dielectric constant, atomic masses and the volume of
the primitive unit cell (see expression (3)). Since the lattice
constant of the crystallographic unit cell depends slightly upon
U (see figure 1(a)), hence the volume of the primitive cell stays
dependent on U as well. When the remaining quantities are
kept constant, the volume change amounts to approx. 6%,
giving the mentioned increase of the LO frequency. A small

Figure 5. (a) Evolution of �-point longitudinal optic frequency
(ωLO) versus U . (b) Evolution of �-point transverse optic frequency
(ωTO) versus U . (c) Evolution of �-point LO–TO splitting (	LO−TO)
versus U . Experimental values of the respective frequencies are
taken from [9, 10].

Figure 6. Total phonon density of states for MnO calculated with
U = 1 eV (dashed curve) and U = 7.9 eV (solid curve).

variation of ωLO as compared to a quite significant change
of ωTO results in a decrease of LO–TO splitting as shown in
figure 5(c). It should be mentioned that neither low nor high
U reproduce the experimental frequencies of LO modes. Only
the TO modes in the [ξ00] direction meet the room temperature
experimental data [10] for U = 4.9 eV (figure not shown). In
the [ξ00] direction, the TO branch calculated with U > 5.9 eV
shows better agreement with the low temperature data [13],
while in the [ξξξ ] direction it remains slightly overestimated.
The zone center ωTO = 8.4 THz and ωLO = 14.9 THz
calculated with U = 7.9 eV are comparable to the zone
center TO and LO frequencies obtained by Savrasov et al [5]
(ωTO = 8.9 THz, ωLO = 15.3 THz). The calculated ωTO stays
in very good agreement with ωTO measured at 4.3 K by Chung
et al [13].

Figure 6 shows the total phonon density of states
calculated with U = 1 and 7.9 eV. A shift of the phonon
spectrum to higher frequencies with the increasing U is
observed. This shift is more pronounced for U ranging

4
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Figure 7. Lattice contribution to the heat capacity of MnO calculated
with U = 1 eV (dashed line) and U = 7.9 eV (solid line).
Experimental data (open symbols) are taken from [40]. The inset
shows respective heat capacities for temperatures lower than 50 K.

from 1 to 4.9 eV, while the differences between particular
phonon densities of states calculated for higher Hubbard
terms are rather small. Therefore, the phonon-dependent
thermodynamical functions do not exhibit meaningful changes,
provided U > 4.9 eV is used.

An example is the lattice contribution to the heat capacity,
which is calculated from the known phonon density of states
using equation (6). One has to note that in the case of MnO
the experimental heat capacity contains also the hyperfine and
magnon components. The hyperfine contribution is negligible
above 10 K, while the magnetic component is relevant between
10 and 150 K [39, 40]. MnO undergoes a magnetic transition
at 118 K and hence the experimental heat capacity [40] shows
a λ-type behavior in the vicinity of the Néel temperature.
The lattice heat capacities calculated for U = 1 and 7.9 eV
are shown in figure 7. They follow the Debye model and
approach the Dulong–Petit limit at high temperatures. A
maximal difference between heat capacities calculated with
U = 1 and 7.9 eV is found at about 100 K and it reaches
0.56 J mol−1 K−1. This difference becomes negligible at high
temperatures, i.e. when the Dulong–Petit law is obeyed. The
inset in figure 7 indicates that below 50 K the experimental heat
capacity lies inside the range limited by the theoretical lattice
heat capacities calculated with low and high U . On the other
hand, one has to remember that below the Néel temperature
the experimental heat capacity of MnO is dominated by the
magnetic contribution. Therefore, a simple comparison made
between theoretical lattice contributions obtained at different
values of U and the total heat capacity cannot indicate
unambiguously the value of U reproducing the experimental
data. One may suggest that the lattice heat capacity could
be better predicted with U > 5 eV since for larger U
the calculated dispersion curves are closer to those obtained
experimentally (see figure 4).

Figure 8 shows the mean-squared amplitude of atomic
vibrations (MSD) calculated versus temperature for Mn and
O. A comparison between the thermal motions obtained with
the lowest and the highest U is made. Theoretical MSD are

Figure 8. Mean-squared displacements versus temperature for
cations and anions in MnO crystal calculated using equation (9).
Dashed and solid curves represent calculations performed with
U = 1 and 7.9 eV, respectively. Solid and open symbols denote the
experimental thermal vibrations of Mn and O, respectively.
Experimental data are taken from [41].

also compared to the available experimental MSD measured
at room temperature [41]. In the entire temperature range,
cations have lower MSD than anions due to the difference in
their masses. The mean-squared displacements of Mn increase
with the decreasing U due to the decreased effective force
constant at the Mn site. At very low temperatures the difference
between mean-squared displacements of Mn calculated with
U = 1 and 7.9 eV reaches 30%, while at elevated temperatures
it is over two times greater. A similar effect is encountered
for oxygens, however they are not so sensitive to the choice
of U as cations. At low temperatures the oxygen vibrational
amplitude decreases by 17% when U is raised up to 7.9 eV.
An agreement between theoretical and the experimental mean-
squared displacements measured at room temperature is found
for the lower values of U . The Hubbard terms of 1 and 3 eV
give the experimental MSD for O and Mn, respectively.

The averaged MSD slope can be used to estimate the
Debye temperature (�D) of MnO. The MSD slopes decrease
with the increasing U and hence this results in the increase
of �D while elevating U . The Debye temperature of MnO
calculated for U = 1 and 7.9 eV amounts to 347 and 439 K,
respectively. Both values remain underestimated as compared
to �D = 515 K estimated from the low temperature heat
capacity measurements [40].

4. Summary and conclusions

The on-site Coulomb interactions between 3d electrons,
represented by the Hubbard energy U , are crucial for the
description of the lattice dynamics of MnO. Calculations
carried out with too low repulsion in 3d electron shell result
in the underestimation of the phonon dispersion curves due
to the underestimated Hellman–Feynman forces. The room
temperature frequencies of the phonon dispersion relations
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are reproduced with a reasonable accuracy using U of about
5 eV. The higher Hubbard energies are required to obtain
better agreement with the low temperature transverse optic
phonons. The calculated phonon density of states is affected by
U as well. The higher Coulomb interactions shift the phonon
spectrum to higher frequencies. Therefore, thermodynamical
functions which depend on the phonon density of states also
experience changes. The differences between results obtained
for U < 5 eV are quite significant and they become negligible
when higher U are applied.

Acknowledgment

The Interdisciplinary Modeling Center (ICM), Warsaw
University, Poland, is acknowledged for providing the
computer facilities under grant no. G28-12.

References

[1] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B
44 943

[2] Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T and
Sawatzky G A 1993 Phys. Rev. B 48 16929

[3] Tran F, Blaha P, Schwarz K and Novák P 2006 Phys. Rev. B
74 155108

[4] Dudarev S L, Peng L M, Savrasov S Y and Zuo J M 2000 Phys.
Rev. B 61 2506

[5] Savrasov S Y and Kotliar G 2003 Phys. Rev. Lett. 90 056401
[6] Massidda S, Posternak M, Baldereschi A and Resta R 1999

Phys. Rev. Lett. 82 430
[7] Wdowik U D and Parlinski K 2007 Phys. Rev. B 75 104306
[8] Sakurai J, Buyers W J L, Cowley R A and Dolling G 1968

Phys. Rev. 167 510
[9] Haywood B C G and Collins M F 1969 J. Phys. C: Solid State

Phys. 2 46
[10] Haywood B C G and Collins M F 1971 J. Phys. C: Solid State

Phys. 4 1299
[11] Reichardt W, Wagner V and Kress W 1975 J. Phys. C: Solid

State Phys. 8 3955
[12] Coy R A, Tompson C W and Gürmen E 1976 Solid State
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